FISEVIER

Contents lists available at ScienceDirect

Ceramics International

journal homepage: www.elsevier.com/locate/ceramint

The effects of TiO₂ addition on microwave dielectric properties of Y₃MgAl₃SiO₁₂ ceramic for 5G application

Zhenyu Tan^a, Kaixin Song^{a,*}, Hadi Barzegar Bafrooei^{a,c}, Bing Liu^a, Jun Wu^a, Junming Xu^a, Huixing Lin^b, Dawei Wang^{d,**}

- ^a College of Electronics Information, Hangzhou Dianzi University, Hangzhou, 310018, China
- b Key Laboratory of Inorganic Functional Material and Device, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- ^c Department of Materials Science and Engineering, School of Engineering, Meybod University, Yazd, Iran
- ^d Department of Materials Science and Engineering, The University of Sheffield, Sheffield, S1 3JD, UK

ARTICLE INFO

Keywords: Microwave dielectric properties Microstructure Yttrium aluminum garnet

ABSTRACT

In this paper, thermal stable $Y_3MgAl_3SibO_{12}$ - TiO_2 microwave composite ceramics were firstly fabricated by the high temperature solid phase reaction method. The influence of the sintering temperature, microstructure on microwave dielectric properties of $Y_3MgAl_3SiO_{12}$ by doping TiO_2 were investigated in detailed. TiO_2 addition reduced the ceramic sintering temperature and improved the distribution of grain size. The negative temperature coefficient of resonant frequency ($\tau_f = -32 \text{ ppm/°C}$) of $Y_3MgAl_3SiO_{12}$ was adjusted to near zero value. $0.8Y_3MgAl_3SiO_{12}$ - $0.2TiO_2$ ceramic sintered at 1475 °C for 6 h achieved the optimized microwave dielectric properties: $\epsilon_r = 12.2$, $Q \times f = 21,050 \text{ GHz}$, $\tau_f = +5.2 \text{ ppm/°C}$, which indicated that $0.8Y_3MgAl_3SiO_{12}$ - $0.2TiO_2$ is a potential candidate for dielectric patch antenna and substrate.

1. Introduction

With the development of the Internet of Things, Internet+, 5G Communication, and Multi-Channel Communication Technologies, new communication technologies require faster transmission speed and higher quality of signals, leading to urgent development of novel microwave dielectric ceramic materials [1-3]. Especially, ceramic materials with low dielectric constant (ε_r < 15), and higher quality factor $(Q \times f > 10000 \text{ GHz})$ and near-zero temperature coefficient of resonant frequency ($\tau_f = \pm 10 \text{ ppm/°C}$) are the hotspots of research. Silicate ceramics and composites, including willemite [4], pyroxene [5], cordierite [6], Mg₂SiO₄-CaTiO₃ [7] and mullite-SiC [8], are a series of important and promising microwave dielectric ceramics for 5G communication. Song et al. firstly reported the microwave dielectric properties of pure phase garnet type Y3MgAl3SiO12 ceramic with $\varepsilon_{\rm r}=10.1, {\rm Q}\times f=57,340~{\rm GHz}, \tau_f=-32~{\rm ppm/^\circ C}$ [9]. However, the τ_f of $Y_3MgAl_3SiO_{12}$ is negative, not near zero. The τ_f value of willemite and cordierite had been reported to tune to zero by the addition of TiO2 with positive τ_f (+460 ppm/°C) [10,11]. However, most silicate ceramics were difficult to tune τ_f to zero by the either mixing end-members with negative and positive τ_f or formation of solid solution by high temperature solid state reaction, like forsterite and mullite ceramics [12–14]. Herein, in order to tune τ_f of $Y_3MgAl_3SiO_{12}$ to near zero, TiO_2 with positive τ_f was selected to form new composite ceramics. The microstructure microwave dielectric properties of $Y_3MgAl_3SiO_{12}$ – TiO_2 were studied as a function of sintering temperature and TiO_2 amount.

2. Experimental procedure

 $(1-x)Y_3MgAl_3SiO_{12}$ - $xTiO_2$ (x=0,0.05,0.10,0.15,0.20, abbreviated as YMAST₀₀, YMAST₀₅, YMAST₁₀, YMAST₁₅ and YMAST₂₀) ceramics were prepared by traditional solid state reaction method. High purity raw materials MgO (4 N, Aladdin Industrial Corporation), Y_2O_3 (4 N, Aladdin Industrial Corporation) and SiO₂ (4 N, Aladdin Industrial Corporation) were weighted and calcined at 1300 °C for 4 h. After adding different molar ratios of TiO₂ (99.00%) in $Y_3MgAl_3SiO_{12}$, then the mixtures were ground by a planetary ball mill for 1 h and then dried at 120 °C. Subsequently, the powders were pressed into cylindrical green bodies (Φ 15 mm \times 8 mm). Finally, the green pellets were sintered at 1425–1625 °C for 6 h at a heating rate of 4 °C/min.

The bulk densities of sintered ceramic samples were measured by the Archimedes method. The crystalline phases of the ceramics were identified by X-ray diffraction (XRD) using Cu K α radiation with Ultima

E-mail addresses: kxsong@hdu.edu.cn (K. Song), dawei.wang@sheffield.ac.uk (D. Wang).

^{*} Corresponding author.,

^{**} Corresponding author.

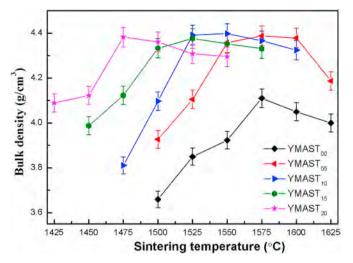


Fig. 1. The bulk density of YMAST $_{00}$, YMAST $_{05}$, YMAST $_{10}$, YMAST $_{15}$ and YMAST $_{20}$ ceramics sintered for 6 h

IV (Rigaku, Japan) operated at 40 kV and 40 mA. The morphology of ceramics was examined using a scanning electron microscopy (SEM, Hitachi S-4800, Hitachi, Japan). The dielectric properties of the samples were measured by Agilent E5071C network analyzer. The τ_f was calculated with the following formula:

$$\tau_f = \frac{(f_2 - f_1) \times 10^6}{f_1(T_2 - T_1)} \text{ (ppm/°C)}$$
(1)

Where f_2 and f_1 represent the resonant frequency at T_2 and T_1 , respectively. T_1 and T_2 are 85 °C and 25 °C, respectively [15].

3. Results and discussion

Fig. 1 showed the relationship between bulk density and sintering temperature of YMAST $_{00}$, YMAST $_{05}$, YMAST $_{10}$, YMAST $_{15}$ and YMAST $_{20}$ ceramics. The bulk density of all ceramics increased with increasing temperature and then decreased after reaching the maximum values, which indicated that there was an optimum densification temperature as listed in Table .1. On the other hand, it should be noted that the densification temperature of ceramics with adding TiO $_2$ was lower than the sample without TiO $_2$ adding. With the increase of TiO $_2$ content, the sintering temperature was found to decrease and the sintering range was broadened, indicating TiO $_2$ was beneficial for reducing sintering temperature and densification of ceramics.

XRD patterns of YMAST $_{00}$, YMAST $_{05}$, YMAST $_{10}$, YMAST $_{15}$ and YMAST $_{20}$ ceramics at the optimum sintering temperature were showed in Fig. 2. The diffraction peak of YMAST $_{00}$ matched well with the standard PDF card of $Al_5Y_3O_{12}$ (Cubic Crystal System, Space Group la-3d), it was a single-phase. With the increase of TiO $_2$ content, impurities $Y_2Ti_2O_7$ (PDF#28–2065) and TiO $_2$ (PDF#99–0008) were found in the samples and the intensity of the diffraction peak gradually increased. Combining theoretical balance formulas and XRD, we can know that part of TiO $_2$ chemically reacted with $Y_3MgAl_3SiO_{12}$ to form $Y_2Ti_2O_7$ [16] and glass phase.

The SEM images of (1-x) $Y_3MgAl_3SiO_{12}-xTiO_2$ ceramics were given in Fig. 3(a-d), where we can see that the grain sizes distribution was uniform and the grain sizes tended to decrease with increasing TiO_2

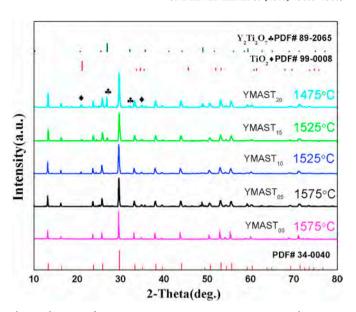


Fig. 2. The XRD of YMAST $_{00}$, YMAST $_{05}$, YMAST $_{10}$, YMAST $_{15}$ and YMAST $_{20}$ ceramics at the optimum temperature for 6 h

amount, Grain size distribution was obtained by Image J and Gaussian Fitting, as displayed in Fig. 3(e–h). The average grain size decreased slightly from $2.1~\mu m$ for $YMAST_{05}$ and $YMAST_{10}$ to $1.9~\mu m$ for $YMAST_{15}$ and $YMAST_{20}$ with the amount of TiO_2 increased, because TiO_2 and Rod-shaped grains seated at the grain boundary and pores, and inhibited the grain growth. Fig. 4 was the EDS of $YMST_{20}$ ceramic at 1475 °C. The content of Magnesium and Silicon were basically unchanged, point B has higher content of Oxygen and Titanium, lower content of Aluminum, which can be indicative of the $Y_2Ti_2O_7$ phase in Rod-shaped grains, in agreement with the XRD data (Fig. 2).

The relative dielectric constant (ε_r) of YMAST₀₅, YMAST₁₀, YMAST₁₀, YMAST₁₅ and YMAST₂₀ as a function of sintering temperature was shown in Fig. 5. The ε_r appeared to increase rapidly with the increase of sintering temperature at first, and then tended to be stable, agreeing well with the change of bulk density (Fig. 1). Furthermore, ε_r value increased with the increase of TiO₂ amount in Fig. 5, attributed to the much higher ε_r value of TiO₂ (~106) than that of Y₃MgAl₃SiO₁₂ (~10) [17]. According to the mixing law, the ε_r of composites should meet the following formula [18–21]:

$$ln\varepsilon = X_Y ln\varepsilon_Y + X_T ln\varepsilon_T \tag{2}$$

Where X_Y and X_T are the percentage of $Y_3MgAl_3SiO_{12}$ and TiO_2 in the total volume, respectively. ε_Y and ε_T are the ε_r of $Y_3MgAl_3SiO_{12}$ and TiO_2 , respectively. Since the ε_r value of TiO_2 (~106) is much larger than of $Y_3MgAl_3SiO_{12}$, the overall ε_r increased with the increase of TiO_2 . It demonstrated that the addition of TiO_2 was useful to improve ε_r value of $Y_3MgAl_3SiO_{12}$ ceramics.

Fig. 6 showed the Q \times f of (1-x) Y₃MgAl₃SiO₁₂-xTiO₂ ceramics increased at first and then decreased after reaching the optimum value with the increase of sintering temperature, indicating that Q \times f value was closely related to bulk density. It is well-known that the dielectric loss is mainly composed of intrinsic loss and extrinsic loss. Intrinsic loss is mainly affected by internal factors such as ionic polarization and crystal structure. The extrinsic loss is mainly affected by external

Table 1
The optimal sintering temperature and optimal bulk density of YMAST₀₀, YMAST₀₅, YMAST₁₀, YMAST₁₅ and YMAST₂₀.

	YMAST ₀₀	YMAST ₀₅	YMAST ₁₀	YMAST ₁₅	$YMAST_{20}$
Optimal sintering temperature	1575 °C	1575 °C	1525 °C	1525 °C	1475 °C
Optimal bulk density	4.110 g/cm ³	4.388 g/cm ³	4.389 g/cm ³	4.379 g/cm ³	4.382 g/cm ³

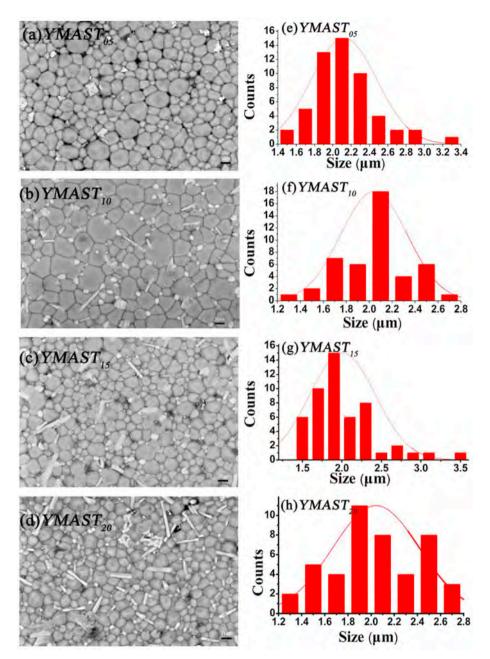


Fig. 3. The SEM and grain size distribution of YMAST₀₅, YMAST₁₀, YMAST₁₅ and YMAST₂₀ ceramics at optimum sintering temperature.

defects such as second phase, grain size and distribution, grain boundaries, glass phase and oxygen vacancies. The Q \times f of YMAST₀₅ and YMAST₁₀ ceramics were smaller than that of pristine samples, mainly because a small amount of secondary phase had little effect on the Q \times f value of Y₃MgAl₃SiO₁₂ ceramics. With the increase of TiO₂, the decreasing trend of $Q \times f$ became faster, indicating that excessive TiO_2 incorporation caused lattice defects. When $x \ge 0.2$, $Q \times f$ decreased further from about 54,000 GHz to about 21,000 GHz, which was mainly related to the second phase of glass phase, TiO2 and $Y_2Ti_2O_7$, whose Q × f only is 9,000 GHz [22]. Herein, the secondary phases were the main cause of the sharp deterioration of the Q \times f value of YMAST ceramics. Although the second phase filled some of the pores and limited the growth of grains, the second phase led to an increase in the grain boundary of Y₃MgAl₃SiO₁₂, which were easy to produce the internal stress of lattice distortion to increase, causing an increase in loss.

The $\varepsilon_{\rm r}$, Q \times f and $\tau_{\rm f}$ of (1-x) Y₃MgAl₃SiO₁₂-xTiO₂ ceramics as a

function of x value sintered at the optimum temperature were shown in Fig. 7. The red line displayed that $\varepsilon_{\rm r}$ value of all ceramic samples with TiO₂ was increased compared with $\varepsilon_{\rm r}$ value of ceramic sample without TiO₂, $Q\times f$ had the opposite trend compared with $\varepsilon_{\rm r}$ value as showed with black line, all in agreement with the theoretical explanations. The blue line in Fig. 7 was obvious that the τ_f value increased from -25.3 ppm/°C to 5.23 ppm/°C, being consistent with the calculation theory of the composite ceramic, described in the following formula [18–21]:

$$\tau f = V_1 \tau f_1 + V_2 \tau f_2 + V_3 \tau f_3 \tag{3}$$

Where V₁, V₂ and V₃ are respectively the percentage of TiO₂, Y₂Ti₂O₇ and Y₃MgAl₃SiO₁₂ in the total volume, τ_{f1} , τ_{f2} and τ_{f3} are the τ_f value TiO₂, Y₂Ti₂O₇ and Y₃MgAl₃SiO₁₂ [23]. The τ_f of TiO₂ is +460 ppm/°C, the τ_f of Y₂Ti₂O₇ is -30 ppm/°C and the τ_f of Y₃MgAl₃SiO₁₂ is -28.1 ppm/°C. Therefore, the τ_f value of (1-x) Y₃MgAl₃SiO₁₂-xTiO₂ ceramic was closer to zero with the increase of TiO₂.

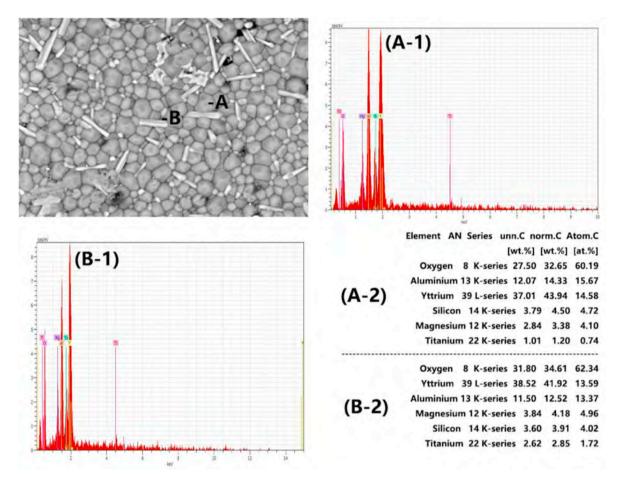


Fig. 4. The EDS of YMAST₂₀ ceramic at optimum sintering temperature.

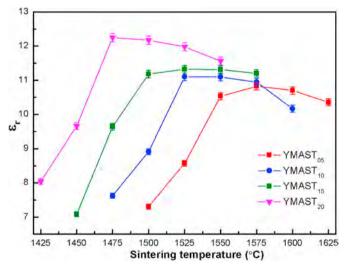


Fig. 5. The ϵ_r of YMAST $_{05},$ YMAST $_{10},$ YMAST $_{15}$ and YMAST $_{20}$ ceramics sintered for 6 h.

4. Conclusions

 $(1-x)Y_3MgAl_3SiO_{12}$ - $xTiO_2$ composite ceramics were prepared by a high temperature solid phase reaction method. TiO_2 addition reduced and broadened the sintering temperature and range of the composite ceramics. The XRD patterns showed that with the addition of TiO_2 , the main crystalline phase was still $Y_3MgAl_3SiO_{12}$, and the second phases of $Y_2Ti_2O_7$ and TiO_2 appeared. With the amount of TiO_2 increased, the

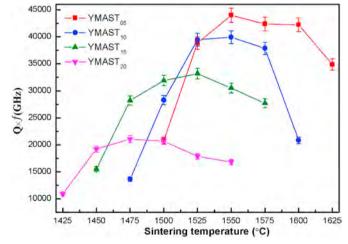


Fig. 6. The Q \times f of YMAST $_{05},$ YMAST $_{10},$ YMAST $_{15}$ and YMAST $_{20}$ ceramics sintered for 6 h.

densification temperature and $Q \times f$ was lowered, and the $\varepsilon_{\rm r}$ and τ_f increased. The optimized microwave dielectric properties of YMAST $_{05}$ ceramic sintered at 1550 °C was achieved: $\varepsilon_{\rm r}=10.7$, $Q\times f=42,\!242$ GHz, $\tau_f=-25.40$ ppm/°C. YMAST $_{10}$ ceramic YMAST $_{05}$ ceramic showed the optimized microwave dielectric properties sintered at 1525 °C: $\varepsilon_{\rm r}=11.0$, $Q\times f=39,\!929$ GHz, $\tau_f=-20.16$ ppm/°C. YMAST $_{15}$ ceramic achieved the optimized microwave dielectric properties at 1525 °C: $\varepsilon_{\rm r}=11.3$, $Q\times f=31,\!195$ GHz, $\tau_f=-10.69$ ppm/°C. YMAST $_{20}$ ceramic achieved the optimized microwave dielectric properties at 1475 °C: $\varepsilon_{\rm r}=12.2$, $Q\times f=21,\!050$ GHz, $\tau_f=+5.2$ ppm/°C.

Fig. 7. The ε_r , Q \times f and τ_f of (1-x) Y₃MgAl₃SiO₁₂-xTiO₂ ceramics sintered at the optimum temperature for 6 h as a function of x value.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships That could have appeared to influence the work reported in this paper.

Acknowledge

This work was supported by the National Natural Science Foundation of China under grant number 51672063 and 51802062, Cultivation plan of young and middle-aged academic leaders in Zhejiang Province under grant number: GK188800207036, GK1988002099407-002. Open projects of Key Laboratory of inorganic functional materials and devices, Shanghai silicate institutes, Chinese academy of sciences under grant number: KLIFMD201708.

References

- [1] Z.X. Fang, Bin Tang, Temperature stable and high-Q microwave dielectric ceramics in the Li₂Mg_{3-x}Ca_xTiO₆ system (x=0.00-0.18) [J], Ceram. Int. 2 (2017) 1682–1687.
- [2] X.K. Lan, Lei Wen, Lattice structure and microwave dielectric properties of [Mg 0.5Si_{0.5}]³⁺-doped LiAlO₂ solid solution [J], J. Mater. Sci. Mater. Electron. 30 (2019) 11764–11770
- [3] J. Li, Lei Wen, Ultra broad temperature stability of stuffed tridymite-type BaAl₂O₄

- co-doped by $[Zn_{0.5}Ti_{0.5}]^{3+}$ with weak Ferro electricity [J], Ceram. Int. 45 (2019) 22493–22497
- [4] Z.H. Zhou, X.L. Tang, Microwave dielectric properties of LBBS glass added (Zn_{0.95}Co_{0.05})₂SiO₄ for LTCC technology [J], Ceram. Int. 42 (2016) 11161–11164.
- [5] H. Sun, J. Zou, (Ca_{1-x}Mgx)SiO₃: a low-permittivity microwave dielectric ceramic system [J], Mater. Adv. Technol. 138 (2007) 46–50.
- [6] J.S. Wei, K.X. Song, Crystal structure and microwave dielectric properties of CaTiO₃ modified Mg₂Al₄Si₅O₁₈ cordierite ceramics [J], J. Alloys Compd. 689 (2016) 81–86.
- [7] G. Dou, M. Guo, Low-temperature sintered Mg₂SiO₄-CaTiO₃ ceramics with near zero temperature coefficient of resonant frequency [J], J. Mater. Sci. Mater. Electron. 24 (2013) 1431–1438.
- [8] Hui Gao, Fa Luo, Effect of preparation conditions on mechanical, dielectric and microwave absorption properties of SiC fiber/mullite matrix composite [J], Ceram. Int. 45 (2019) 11625–11632.
- [9] J.B. Song, K.X. Song, Ionic occupation, structures and microwave dielectric properties of Y₃MgAl₃SiO₁₂ garnet-type ceramics [J], J. Am. Ceram. Soc. 101 (2018) 244–251.
- [10] Z.Z. Weng, C.X. Song, Microstructure and broadband dielectric properties of Zn₂SiO₄ ceramics with nano-sized TiO₂ addition [J], Ceram. Int. 45 (2019) 13251–13256.
- [11] S. Wu, K.X. Song, Effect of TiO₂ doping on the structure and microwave dielectric properties of cordierite ceramics [J], J. Am. Ceram. Soc. 98 (2015) 1842–1847.
- [12] T. Tsunooka, Y. Higashida, Effects of TiO₂ on sinter ability and dielectric properties of high-Q forsterite ceramics [J], J. Eur. Ceram. Soc. 23 (2003) 2573–2578.
- [13] B. Zhang, et al., Ultra-low cost porous mullite ceramics with excellent dielectric properties and low thermal conductivity fabricated from kaolin for radome applications [J], Ceram. Int. 45 (2019) 18865–18870.
- [14] J. Wang, et al., The microstructure, mechanical and dielectric properties of CNTs/mullite ceramics composite [J], Key Eng. Mater. 313 (2006) 145–150.
- [15] K.X. Song, Z.H. Ying, Phase evolution and microwave dielectric properties in the systems of (Mg_{1-x}Ca_x) ₂SiO₄ ceramics [J], Adv. Mater. Res. 152 (2010) 801–804.
- [16] X.J. Wang, X.J. Mao, Fabrication and properties of Y₂Ti₂O₇ transparent ceramics with excess Y content [J], Ceram. Int. 44 (2018) 9514–9518.
- [17] J. Guo, D. Zhou, Microwave dielectric properties of (1-x) ZnMoO₄-xTiO₂ composite ceramics [J], J. Alloys Compd. 509 (2011) 5863–5865.
- [18] Z.X. Fang, Bin Tang, Temperature stable and high-Q microwave dielectric ceramics in the Li₂Mg_{3-x}Ca_xTiO₆ system (x=0.00-0.18) [J], Ceram. Int. 43 (2017) 1682–1687.
- [19] D. Wang, S. Zhang, G. Wang, Y. Vardaxoglou, W. Whittow, D. Cadman, D. Zhou, K. Song, I. M Reaney, Cold sintered CaTiO₃-K₂MoO₄ microwave dielectric ceramics for integrated microstrip patch antennas [J], Applied Materials Today 18 (2020) 100519.
- [20] D. Wang, S. Zhang, D. Zhou, K. Song, A. Feteira, Y. Vardaxoglou, W. Whittow, D. Cadman, I.M. Reaney, Temperature stable cold sintered (Bi_{0.95}Li_{0.05})(V_{0.9}Mo_{0.1}) O₄-Na₂Mo₂O₇ microwave dielectric composites[J], Materials 12 (2019) 1370 (Invited feature article).
- [21] D. Wang, D. Zhou, S. Zhang, Y. Vardaxoglou, W.G. Whittow, D. Cadman, I.M. Reaney, Cold-sintered temperature stable Na_{0.5}Bi_{0.5}MoO₄-Li₂MoO₄ microwave composite ceramics[J], ACS Sustain. Chem. Eng. 6 (2018) 2438–2444.
- [22] Y. Xiao, Q.T. Zhang, Microwave dielectric properties of (Y_{0.99}R_{0.01})₂Ti₂O₇(R = Pr, Tb, Ho, Er, Tm, Yb, Lu) [J], Functional Materials 42 (2011) 762–765.
- [23] S.X. Duan, Bin Tang, Influence of Li₂O-B₂O₃-SiO₂ glass on the sintering behavior and microwave dielectric properties of BaO-0.15ZnO-4TiO₂ ceramics [J], Ceram. Int. 42 (2016) 7943-7949.